

۱eg

MSES

Antoon Van Coillie

Navigating the Future of European Waters with Autonomous Innovation 7 November 2023, Rotterdam

AUTOSHIF

ZULU Associates

ZULU Associates Group is active as an initiator, developer and operator of innovations in the marine component of logistic chains.

Its goal is to enable **zero emission** operation of commercial vessels on short sea, coastal and inland waterways routes through **autonomous operation** and **alternative propulsion**.

ZULU Associates participated in AUTOSHIP.

ZULU Associates developed the innovative ZULU or Pallet Shuttle Barge for European waterways and is now developing autonomous barges as well as short sea vessels.

Uncrewed

- All systems (not limited to navigation) on vessel operate without crew on board during passage.
- Autonomous operation equipment on vessel for present waterway/maritime infrastructure.
- Remote Control Centres (RCC) in contact as required for monitoring and control.
- Autonomous equipment capable of situational awareness and complexity analysis (levels) as well as decision making (AI).
- Situational awareness and complexity communicated from vessel to RCC.
- RCC intervention in steps pending on operational situation & need for intervention.
- Data gathering for multiple purposes including AI development & improvement.

AUTOSHIF

Challenges for IWT and SSS

- Sustainability
- Modal Shift
- Crew shortages

FAQ1.2: How close are we to 1.5°C?

Human-induced warming reached approximately 1°C above pre-industrial levels in 2017

AUTOSHII

🛿 Vessel 🔳 Engine 💷 Add. Fuel System 🗏 Oil \$60/Barrel; NG &El \$20/MWh 🚿 Oil \$150/Barrel; NG \$60 & El \$100/MWh 🗢 Electricity \$60/MWh

https://blog.sintef.com/sintefocean/zero-carbon-e-fuels-are-they-sustainable-for-maritime-transport/

Reducing emissions from Shipping: change the economic model

OPEX

Increase energy efficiency of hull to reduce energy needs/costs - energy is new KPI Reduce maintenance needs Uncrew the vessel No safety equipment for crew (SOLAS) Reduction of human errors/risks

CAPEX Simplify vessel and equipment No crew accommodation No safety equipment for crew (SOLAS)

Build (very) standardised

INCOME Extend operational hours Increase operational efficiency through cargo flow digitalisation & sailing plan

Economics

Example of existing manned 120 TEU diesel barge vs autonomous 90 TEU battery powered barge

Because the autonomous barge operates 24/24, it sails 60 hrs a week and moves 491,400 TEU vs 36 hrs and 280,800 TEU moved for the manned diesel barge.

The cost per TEU is € 12,46 for the autonomous barge and € 15,06 for the manned barge.

Economics

Example of newly built traditional manned 120 TEU diesel barge vs autonomous 90 TEU new concept battery powered barge

When a new built diesel barge is considered operating 24/24 then the battery barge has a lower overall cost.

The cost per TEU is \in 12,46 for the autonomous barge and \in 15,28 for the manned barge.

Reducing emissions from Shipping: availability alternative propulsion

Wind

Foils

Figuur 14: Evolutie van de vervoersvraag in het goederenvervoer per modus (miljard tonkm)

Bron: Federaal Planbureau

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements N° 815012, 859992, 861678.

VS

AUTOSHIP

SES

Modal Shift: Short Sea

Rotterdam, 7 November 2023

AUTOSHII

Modal Shift

To have a succesful Modal Shift, the total alternative logistic chain needs to be:

- Price Competitive
- Time Competitive
- Sustainable
- Cargo flow digitalisation is key
- Vessel size becomes a function of distance, vessel and cargo handling, terminal equipment, terminal size, multimodal access to the terminal.

Big is no longer the paradigm Energy issue becomes manageable

Crew Shortages/Safety

Figure 6.3 Age distributions for the five countries with most workers in IWT for 2013

AUTOSHIP

SES

Autonomy/Digitalisation : Other Benefits

- Adherence to sailplan resulting in:
 - more efficient vessel operation & energy use
 - more efficient use of infrastructures
 - more efficient logistic chain
- Flow data used for efficient handling of cargo
- Reduction human error
- Better predictability of risks
- Most expensive asset not on board_
- Size becomes irrelevant

Iower insurance premiums

Conclusions

Rotterdam, 7 November 2023

Zero emission logistics with IWT and SSS is feasible, when it is economically competitive:

- Efficient hull design
- Uncrewed operation
- Availability of energy carriers
- Increased logistic efficiencies

Redesign of logistic chains: not remaining with existing logistic chains and paradigms

Alternative propulsion will need a holistic approach: vessel and energy infrastructure

Thank you

AUTOSHIP

Rotterdam Ahoy 7 November 2023

Aegis

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements N° 815012, 859992, 861678.

MSES